Breaking Strong Encapsulation:
A Comprehensive Study of Java Module Abuse

Yirui He
yiruih@uci.edu
University of California, Irvine
Irvine, California, USA

Yecheng Zhou
yechenz2@uci.edu
University of California, Irvine
Irvine, California, USA

Abstract

As an increasing number of software systems reach sizes of hun-
dreds of millions of lines of code, relying solely on code-level ab-
stractions is impractical, posing profound challenges to software
maintenance. Java Platform Module System (JPMS) provides ar-
chitectural abstractions that enable Java engineers to control the
required and provided interfaces of a module. Despite numerous
advantages of enforced strong encapsulation provided by JPMS,
developers still break those encapsulations to access the internal
elements of a module. Such practice is referred to as Breaking the
Strong Encapsulation (BSE). This behavior not only complicates
the migration to newer versions (e.g., Java 9) but also threatens the
integrity and safety of software projects. Since the BSE problem
is still underexplored, in this work, we conduct the first empirical
study to identify and characterize this widespread and impactful
problem. We first collect a comprehensive dataset containing 4,079
GitHub issues and then investigate those issues from various per-
spectives, including symptoms, abuse sources, desired functionali-
ties, and resolutions. Our empirical study highlights a tension in
the Java module system: module developers aim to enforce strong
encapsulation while module users frequently attempt to break the
encapsulation. Our finding also emphasizes the need for both prac-
titioners and researchers to develop effective strategies to mitigate
these problems, offering an understanding of BSE characteristics to
inform future detection and repair efforts.

CCS Concepts

« Software and its engineering — Software architectures; Soft-
ware evolution.

Keywords

Software Architecture, Component-Based Architecture, Java Plat-
form Module System, Health of Java Software Ecosystems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE °26, RIO DE JANEIRO, BRAZIL

© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/10.1145/3744916.3764526

Yongbo Chen
yongbocl@uci.edu
University of California, Irvine
Irvine, California, USA

Qiran Wang
giranwl@uci.edu
University of California, Irvine
Irvine, California, USA

Jessy Ayala
jessyal@uci.edu
University of California, Irvine
Irvine, California, USA

Joshua Garcia
joshug4@uci.edu
University of California, Irvine
Irvine, California, USA

ACM Reference Format:

Yirui He, Yongbo Chen, Jessy Ayala, Yecheng Zhou, Qiran Wang, and Joshua
Garcia. 2018. Breaking Strong Encapsulation: A Comprehensive Study of
Java Module Abuse. In Proceedings of 48th IEEE/ACM International Confer-
ence on Software Engineering (ICSE °26). ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3744916.3764526

1 Introduction

Software systems have grown increasingly large and more complex,
resulting in many legacy software systems, which tend to remain
in deployment and use for years or even decades. Maintaining such
large and complex systems through traditional code-level abstrac-
tions (e.g., functions, classes, and packages) has become increas-
ingly challenging, especially as individual systems reach hundreds
of millions of source lines of code. A major means of handling
such large and complex software systems has traditionally been to
utilize constructs from software architecture (e.g., components, con-
nectors, and configurations) [85, 91, 92]. Unfortunately, ensuring
that architecture-level abstractions and code-level abstractions are
consistent has been a longstanding problem at the core of software
architectural drift and erosion [86, 93], which we collectively refer
to as architectural decay.

A major example of architectural decay is the Java Development
Kit (JDK), which JDK engineers have described as a ball-of-mud
architecture [83, 88]. Projects built using the JDK have abused ac-
cess to powerful, unsupported, and dangerous mechanisms (e.g.,
sun.misc.Unsafe [57, 78]). As documented by JDK engineers, this
exploitation resulted in a rigid architecture [88] and forced engi-
neers to maintain unsupported APIs rather than implement new
features or conduct critical maintenance [50-52, 87, 89, 90]. To ad-
dress these issues, the JDK introduced the Java Platform Module
System (JPMS), providing architectural modules as language-level
constructs that define explicit boundaries and specify permitted
inter-module communications [56]. This modular architecture sig-
nificantly enhances the maintainability of both the JDK itself and
Java-based applications. The adoption of JPMS modules continues
to grow with over seven thousand unique JPMS modules in exis-
tence [44]. However, some developers are still breaking the modules’
strong encapsulation (BSE) [51, 52] to access module internals. This
behavior not only undermines JDK engineers’ efforts in developing
JPMS, but results in another architectural decay problem [85, 92] by
having the prescriptive architecture (i.e., the architecture as-intended

https://doi.org/10.1145/3744916.3764526
https://doi.org/10.1145/3744916.3764526

ICSE *26, April 12-18, 2026, RIO DE JANEIRO, BRAZIL

or as-documented by its architects) of a Java system violated by ille-
gal access of a JPMS module in the system’s descriptive architecture
(i.e., the architecture as-implemented by developers).

Arguments add in build system
junits/gradle.properties

The exports are needed due to
https://github.com/diffplug/spotless/issues/834
org.gradle.jvmargs=... \

--add-exports ..

Arguments add in build system
spotless/gradle.properties

To fix metaspace errors

junit-team/junit5

Comments
win code

diffplug/spotless

org.gradle.jvmargs= .. \
Issue --add-exports ..
#871, #834
,yetc.
Arguments add in build system
google/google- google-java-format/pom.xml
java-format
<compilerArgs>
import <arg> --add-exports .. </arg>
com.sun.tools.javac.ap
i.JavacTrees; </compilerArgs>

Figure 1: Example of BSE Problem Propagation

The BSE problem can introduce both compile-time and run-
time errors, thereby hindering migration to Java versions above
9. Furthermore, the BSE problem has a significant impact as it
can propagate through the software ecosystem via project depen-
dencies, affecting any project with direct or indirect dependencies
on modules that require access to internal APIs. For instance, as
depicted in Figure 1, JUnit5 [33] breaks the JDK’s strong encapsula-
tion and accesses the internal APIs by adding Java Virtual Machine
(JVM) options, i.e., ——add-exports. The need for JUnit5 to break
the JDK’s strong encapsulation originated from its dependency on
the Spotless plugin [45], which also required the same set of pack-
ages. GitHub issues in Spotless [11, 42] indicate that the inclusion of
these options originated from Google Java Format [10], a code for-
matting tool implementing Google Java Style guidelines [26]. This
case demonstrates how Google Java Format’s use of JDK internal
APIs creates issues that propagate through the dependency chain,
forcing dependent projects to break strong encapsulation.

Helping developers identify and mitigate these previously unex-
plored architectural module-related defects is important for ad-
dressing architectural decay and improving the maintainability
of both the JDK and Java-based software. While prior research
has examined aspects of JPMS including migration, security, and
over-exposure concerns [55, 60, 67, 81], the challenges brought by
abusing JPMS modules remain largely unexplored. To address this
gap, we present the first empirical study investigating BSE issues
that emerge from problematic Java module interactions. This work
makes three major contributions:

o We conducted the first empirical study of BSE problems arising
in JPMS modules across the Java ecosystem by collecting and
studying issues related to BSE from 4,079 GitHub [1] issues.

o We summarized a taxonomy of BSE problems, categorizing their
symptoms, abuse sources, targeted components (modules, pack-
ages, and APIs), and resolution strategies.

Yirui He, Yongbo Chen, Jessy Ayala, Yecheng Zhou, Qiran Wang, and Joshua Garcia

o To facilitate future research on BSE problems, including their

detection and repair, we publicized our dataset [2].

The remainder of the paper is organized as follows: Section 2
provides background on JPMS and BSE; Section 3 describes our
methodology; Section 4 introduce the research questions; Section 5
summarizes our taxonomy; Section 6 details the obtained results;
Section 7 presents implications and threats to validity; Section 8
outlines related work, and Section 9 concludes the paper.

2 Background

2.1 Java Platform Module System

2.1.1 Module and Module Directives. JPMS introduces Java module,
a higher level of organization beyond packages. A module in Java
is a uniquely named, reusable entity encompassing related pack-
ages and resources (e.g., images and XML files), and is defined by a
module descriptor that specifies several key aspects: the module’s
name, its dependencies on other modules, the packages it explicitly
shares with other modules (implicitly keeping all others private),
the services it provides and consumes, and the modules it permits
for reflection. More specifically, developers are allowed to declare

modules (i.e., the prescriptive architecture) using various module di-

rectives. These declarations, referred to as module declarations, and

specified in a file called module-info. java, are compiled into mod-
ule descriptors that are stored in a file called module-info.class

that resides in the module’s root folder [63].

Figure 2 shows the declarations and the relation between 4 mod-
ules from JUnit5 [32], a popular open-source Java testing frame-
work, which has now adopted JPMS: org. junit. jupiter.engine,
org.junit.platform.commons,org.junit.platform.launcher,
and org. junit.platform.engine.

The module declaration consists of a unique name and a body.
In the module body, a developer can use the following module
directives to specify module interfaces and their usage [63]:

e The requires directive establishes module dependencies, for in-
stance, as depicted in Figure 2 with org. junit. jupiter.engine
requiring org. junit.platform.commons.

e The exports directive allows a module, such asorg. junit.plat-
form.engine, to make its package accessible to other modules
at both compile and run time.

o The opens directive, exemplified by org. junit. jupiter.engine
opening package org. junit. jupiter.engine.extension to
org.junit.platform.commons, permits runtime reflective ac-
cess to a package’s types and members.

e The provides. . .with directive declares a module’s provision of
a service implementation [14, 56], like org. junit. jupiter.en-
gine offering TestEngine interface with JupiterTestEngine.

e Finally, the uses directive indicates a module’s consumption
of a service, such as org. junit.platform.launcher using the
TestEngine service provided by org. junit.platform.engine.
JPMS enhances Java by enforcing module dependency specifica-

tion and strong encapsulation through explicit declarations for both

compile-time and runtime access [56], thereby improving system
security and design maintainability.

2.1.2 Unnamed Module. While JPMS enforces strong encapsula-
tion and requires all code to reside in modules, creating explicit

Breaking Strong Encapsulation: A Comprehensive Study of Java Module Abuse

1 module org.junit.platform.launcher {

2 requires transitive org.junit.platform.engine;
3 uses org.junit.platform.engine.TestEngine;

4

51)

6

7 module org.junit. jupiter.engine {

8 requires org.junit.platform.commons;

9 provides org.junit.platform.engine.TestEngine
10 with org.junit. jupiter.engine.JupiterTestEngine;
11 opens org.junit. jupiter.engine.extension to
12 org.junit.platform.commons;

13

14 |3

16 module org.junit.platform.commons {

17 exports org.junit.platform.commons.logging to
18 org.junit.platform.engine;

19

20 |)

21

22 module org.junit.platform.engine {

23 exports org.junit.platform.engine;

24

25 |}

(a) Module Declarations and Their Directives Provided in
Their module-info. java Files

Module
org.junit.platform.commons

opens to

Package
org.junit.platform.commons.logging

Module Module
org.junit.jupiter.engine exports to org.junit.platform.engine
Package requires Package

org.junit.jupiter.engine.extension org.junit.platform.engine

exports

Package provides...with... Interface
— 5

org.junit.jupiter.engine org.junit.platform.engine TestEngine

Class usesI t requires transitive

org.junit.jupiter.engine.JupiterTestEngine

Module
org.junit.platform.launcher

(b) Dependencies Between Modules Based on Their Directives

Figure 2: Inter-Dependencies of Four Example Modules

modules is not mandatory for backward compatibility. The un-
named module serves as a container for all “non-modular classes,”
which include (1) at compile time, classes being compiled absent a
module descriptor, and (2) at both compile and run time, any class
loaded from the classpath [6, 76].

Unnamed modules can operate without module descriptors. Since
they lack formal names, their direct reference in module declara-
tions is prevented. To maintain compatibility with JPMS, unnamed
modules possess three critical characteristics: (1) implicit readabil-
ity of all modules in the module graph, (2) automatic export of
all packages, and (3) unrestricted reflective access to all modules.
Despite an unnamed module’s inability to be directly referenced in
module declarations due to its lack of a formal name, these char-
acteristics, particularly the exposure of all packages, significantly
undermine the encapsulation guarantees that JPMS was designed
to provide [6, 76].

ICSE *26, April 12-18, 2026, RIO DE JANEIRO, BRAZIL

2.2 Breaking Strong Encapsulation

JPMS enforces strong encapsulation, ensuring the descriptive ar-
chitecture follows the accessible scope specified in the prescriptive
architecture. However, many developers still break Java modules’
strong encapsulation and leverage some powerful functionalities
offered by encapsulated internal APIs (e.g., sun.misc.Unsafe [57]).

To ease the transition of applications to Java 9 and higher, JDK
developers designed several arguments to make projects that violate
the strong encapsulation principle usable. These arguments explic-
itly make encapsulated code accessible and break Java modules’
strong encapsulation, which is defined in the module descriptor.

To that end, Java developers can employ the following argument
to export packages:

e -—add-exports <module>/<package>=<readingmodule> al-

lows for the exporting of <package> from <module> to <read-

ingmodule>. Here we refer to --add-exports <module>/-
<package>=<readingmodule> as an argument, where --add
-exports is an option, and <module>/<package>=<read-
ingmodule> is the parameter of the option.
To open packages for run-time access using reflection, two methods
are available:

e —-add-opens<module>/<package>=<readingmodule>, allows for
the opening <package> from <module> to <readingmodule>.
--illegal-access=(permit | warn | debug) argument en-
ables access to packages that were accessible at run-time through
reflection in JDK 8 but encapsulated in JDK 9 and later ver-
sions [20-23]. This command allows code that previously had
unauthorized entry into JDK internals to function as in earlier
releases. The evolution of this option is depicted in Table 1. From
Java 9 to Java 15, when a module’s strong encapsulation is broken
due to illegal reflective access of an unopened package of that
module, which we refer to as a BSE warning, the JDK emits a
warning message and does not enforce strong encapsulation by
default. Java 16 enforces this form of reflection-oriented strong
encapsulation by default. For Java 17 onward, such strong encap-
sulation can no longer be disabled by this option.

The default JVM’s behavior is strictly aligned with the encap-
sulation rules, effectively preventing illegal access during compile
time. In contrast, the runtime environment initially adopted a more
lenient stance to support backward compatibility [20, 21, 24], i.e.,
--illegal-access=permit as the default. This mechanism aimed
to facilitate smoother migration and enhance the compatibility of
applications originally developed for Java 8 and earlier [18, 56, 84].
However, this allowance for default runtime access has been pro-
gressively phased out while the option was deprecated in JDK 16
and made obsolete in JDK 17 [22, 23]. Since Java 17, previously
issued BSE warnings for illegal access have become exceptions and
errors without specialized configuration. This shift underscores the
platform’s commitment to enforcing a long-established principle
within the JDK| a significant step for enforcing module integrity
and encapsulation in Java.

Note that BSE problems are a form of architectural decay because
they only occur when the prescriptive architecture, as specified
in module-info. java, no longer matches the descriptive architec-
ture (i.e., the actual code implementation). More specifically, --add

ICSE *26, April 12-18, 2026, RIO DE JANEIRO, BRAZIL

Table 1: Increasing Strong Encapsulation Enforcement

JDK Version Default Argument Run-time Symptom
JDK 9-15 --illegal-access=permit BSE warning
JDK 16 --illegal-access=deny error/exception
JDK 17+ None error/exception

-exports, --add-opens, and --illegal-access JVM options en-
able architectural erosion by allowing architectural dependencies
that violate a software system’s prescriptive architecture.

3 Methodology

Git %(Q]Res_”}t BSE Property-
Repositories)R Labeled Issues
from GitHub BSE Issue Property

‘ ! Issues Labeling
BSE Search Issue 9, Result
Keywords Collection “’b = BSE Instances
—
BSE Instance
Detection

Figure 3: Process of BSE Issue Study

Figure 3 shows the high-level process we follow to conduct our

study. Initially, we collected GitHub issues (Issue Collection) with
five predefined keywords. We refer to each resulting GitHub issue
involving breaking strong encapsulation as a BSE issue. Each BSE
issue contains at least one BSE abuse instance, defined as either
an occurrence of one of the five keywords described below corre-
sponding to JVM arguments that break strong encapsulation or a
BSE warning. For each BSE issue, we conduct two parallel analyses:
Issue Property Labeling and Issue Instance Detection. The property
labeling process employs open coding to systematically categorize
five key properties: (1) issue classification, (2) problem symptom,
(3) abuse source, (4) abuse target, and (5) resolution strategy, when
available. Simultaneously, we extract and analyze all BSE instances
present in the issue.
Issue Collection. To collect relevant GitHub issues, we selected
five key JVM arguments that enable the circumvention of strong en-
capsulation as introduced in Section 2.2: --illegal-access=per-
mit,--illegal-access=warn,--illegal-access=debug, --add-
exports, and --add-opens. These arguments were determined
based on official Java documentation [37, 50, 52]. Subsequently, we
leveraged the GitHub API [1, 9] to retrieve issues containing one
or more of these five keywords. Our data collection process took
15 days (from Nov. 1, 2023, to Nov. 15, 2023) and resulted in 11,496
data records.

To ensure research validity and generalizability, we focused on
popular and actively maintained projects, as these tend to have
better-established community rules (e.g., GitHub issue format) and
greater community impact. Following established methodology
from prior work [70], we excluded GitHub repositories that met
any of the following criteria: (1) personal repositories: repositories
with fewer than 5 contributors; (2) inactive repositories: repositories
having no open issues or are archived; (3) repositories with a trivial
history: repositories having fewer than 100 commits; (4) unpopular

Yirui He, Yongbo Chen, Jessy Ayala, Yecheng Zhou, Qiran Wang, and Joshua Garcia

repositories: repositories with fewer than 10 stars and 10 forks. Fol-
lowing the removal of pull requests, which is the noise introduced
by the GitHub API [1, 9] retrieval mechanism, and duplicate issues,
we obtained a refined dataset comprising 4,079 unique GitHub is-
sues from 1,351 distinct repositories. The issues’ creation dates span
over six years from Jan. 10, 2017 to Oct. 3, 2023 and the distribution
over time is shown in Figure 5.

LOC Stars Forks Issues Commits
10000.0k{ 100.0ky oo 100.0k]
10.0k i :
10.0k 10.0k
1000.0k| | Lok
Lok 1.0k
100.0k . 0.1k 1.0k
10.0k 0.1k 0.1k 0.01k 0.1k
Lok L 0.01k 0.01k 0.001k 0.01k

Figure 4: Statistics of GitHub Repositories (in Log Scale)

100

80

60

40

Number of Issues

20

Figure 5: Issue Creation Date Distribution over Time

The statistical characteristics of the analyzed repositories (i.e.,

number of stars, forks, issues, commits, and lines of code (LOC)) are
presented on a logarithmic scale in Figure 4. The repositories in our
dataset exhibit substantial development activity and community
engagement, with average values of 339,144 LOC, 2,311 stars, 701
forks, 1,124 issues, and 5,442 commits. These metrics suggest that
BSE problems frequently occur in popular, actively maintained
GitHub projects.
Issue Property Labeling. To systematically characterize BSE
problems, we analyzed the 4,079 BSE issues using an open-coding
methodology, following established practices in empirical software
engineering research [59, 70, 74].

To minimize subjective bias during the labeling process, two
co-authors independently reviewed the same set of issues following
the best practice of prior work [54, 82]. They manually inspected
the issue description and all other information (e.g., issue discus-
sion, pull request, commit messages, source code, comments, and
linked issues) to identify the related label. An issue was labeled only
when its primary focus pertained to BSE problems, excluding cases
where BSE abuse instances were present but irrelevant to the main
discussion (e.g., Issue #4694 [16] contains abuse instances such as
--add-exports, but focuses primarily on hardware architecture
configuration problems, thus receiving no labels). During the open-
coding process, if two co-authors both agreed on the labeling, the

Breaking Strong Encapsulation: A Comprehensive Study of Java Module Abuse

result was finalized. In cases of disagreement, the co-authors con-
vened to discuss and resolve any discrepancies in labeling. Finally,
they reached a consensus on the categorization of BSE problems.
This systematic approach yielded 1,454 labeled issues across 732
GitHub repositories.

BSE Instance Detection. While not all of the 4,079 BSE issues
primarily focus on BSE problems, each contains at least one BSE
abuse instance—defined as either the use of JVM options (e.g., -—add
-opens or --illegal-access) that break strong encapsulation or
runtime BSE warning messages indicating BSE behaviors.

Each BSE abuse instance corresponds to one of the five JVM
arguments that break strong encapsulation or runtime information
indicating BSE. For two JVM arguments (i.e., -—add-exports and -~
add-opens), BSE Instance Detection automatically determines target
packages, target modules, and source modules. For example, --add-
exports java.base/java.lang=ALL-UNNAMED indicates that the
target package java.lang located in target module java.base is
abused by unnamed modules. For BSE warnings, we extract the
source file and target API information to determine whether reflec-
tion abuse originates from the project code or external dependencies.
We identified external dependencies for BSE instances by automati-
cally analyzing directories containing dependency information (e.g.,
.gradle for Gradle, .m2 for Maven) and third-party library locations
(e.g., plugin, lib). Consider the following warning instance: WARN-
ING: Illegal reflective access by p1.C1(jar:file:/.m2/example.jar!/) to
constructor java.lang.invoke.MethodHandles$Lookup(java.lang.Class)).
This warning reveals that p1.C1 from source file example.jar located

in /.m2/” attempts to access the target API constructor java.lang.invoke.

MethodHandles$Lookup(java.lang.Class). The source is identified as
an external dependency based on its location in the .m2 directory,
Maven’s default repository for downloaded dependencies. However,
this approach may underestimate external sources, as third-party
libraries could reside outside these specified directories.

4 Research Questions

To characterize BSE problems, we formulate four research questions
and elaborate on them in the rest of this section.

Given the absence of prior research specifically addressing BSE
problems, our study aims to characterize these problems by first
examining the symptoms identified by developers as reflected in
their GitHub issue discussions. As a result, we study the following
research question:

RQ1 (Symptom): What common symptoms of BSE problems are
identified on GitHub?

Developers often break strong encapsulation due to specific code
requiring access to encapsulated code or resources. To comprehen-
sively understand BSE problems, it is important to examine the
particular source modules that require internal code or resources
and identify the properties of these modules. This leads us to study
our next research question:

RQ2 (Source): Which type of the modules are the foremost sources
of BSE abuse? What are the distinctive properties that characterize
such abusive sources?

When developers break strong encapsulation, they invariably
have a specific target within a particular module that they aim

ICSE *26, April 12-18, 2026, RIO DE JANEIRO, BRAZIL

to access. To understand these desired targets, we conducted an
extensive analysis of both BSE property-labeled issues and BSE
instances. Consequently, we investigate the following research
question:

RQ3 (Target): What are the primary target modules of BSE abuse
instances? What are the distinctive properties that characterize such
abused modules?

Given the impact of BSE on the Java ecosystem, developers have
implemented various resolutions to ensure the correct operation of
their software. These resolutions and the associated experiences
provide valuable insights for the broader developer community.
Consequently, we formulate the following research question to
explore this aspect:

RQ4 (Resolution): In what ways do developers resolve challenges
arising from the breaking of JPMS modules’ strong encapsulation?

5 BSE Taxonomy

Following our systematic analysis process, we investigate our re-
search question and produce a taxonomy of BSE problems shown
in Figure 6 and describe it in the rest of this section.

Problem Symptom categorizes the BSE problems identified in
BSE-related issues. The predominant problems fall into two cate-
gories: (1) Error and Exception, which can lead to runtime failures
(e.g., program crashes) or (2) BSE warning indicating violations of
strong encapsulation principle.

An Abuse Source is a file or module that breaks the strong
encapsulation of a JPMS module and is obtained from both BSE
property-labeled issues and BSE instances. We categorize abuse
sources along two dimensions: module naming (i.e., named module
or unnamed module) and project scope (i.e., internal or external).

We first classify the abuse source based on module naming. A
named module, which is a JPMS module given an explicit name
either through a module-info. java file, which we refer to as a
developer-created module, or through automatic generation from
existing Java ARchive (JAR) [17] files in the project which we refer
to as JAR-based modules. Such modules derive each module’s name
from an explicit name specified by the developer in the JAR file
or from the name of the JAR file itself. The unnamed module, as
introduced in Section 2.1.2, represents a distinct category. Unnamed
modules and JAR-based modules export and open all their packages,
essentially making them inherently poorly modularized and weakly
encapsulated modules. Moreover, we also characterize both BSE
issues and instances by their project scope as either internal or
external. An internal source indicates that the repository’s own code
requires access to Java module’s internal APIs, while an external
source emerges when the repository’s dependencies (e.g., third-
party libraries) require such access.

An Abuse Target is a software entity, i.e., a module, package,
or AP, whose strong encapsulation is broken and, thus, abused by
another software entity, i.e., a file or module, and is obtained from
BSE Instance Detection in Figure 3. Abused target instances serve
as indicators of desired but unsupported functionality within the
API ecosystem. By leveraging the insights gained from abused tar-
gets, the software development community can iteratively improve

ICSE *26, April 12-18, 2026, RIO DE JANEIRO, BRAZIL

Yirui He, Yongbo Chen, Jessy Ayala, Yecheng Zhou, Qiran Wang, and Joshua Garcia

BSE Property-Labeled Issues

[BSE Pr'oblem]

BSE Instances

Resolution
Recommendation

Problem Symptom Resolution Type
(RQ1) (RQ4)

Actual Abuse Source Abuse Target
Resolution (RQ2) (RQ3)
Selected
(RQ4)

Change Library

Upgrade Library
Error and BSE
Exception Warning

Developer-Planned Unnamed Module]
Resolution

Exter‘nal][Type of Abuse]EAbused API

Code Change

Disable Strong
Encapsulation
Enforcement

User-Recommended
Resolution
e
|
|

Downgrade
Java Version

D From Error/Exception

om BSE Warning [_J From Argument I i::

Named Module]

Inter‘nal]

--add-exports

JAR-Based Module)

Developer-Created Module]

Figure 6: Taxonomy of the BSE Property-labeled Issues and BSE Instances

API design and implementation, ultimately enhancing the over-
all developer experience and code quality. Specifically, we explore
the modules, packages, and APIs—including functions, fields, and
constructors—that abusive modules typically attempt to access, as
well as the features of those target modules that often attract the
breaking of strong encapsulation.

In Figure 6, Resolution Type characterizes the strategies men-
tioned or employed to resolve BSE-related problems we summa-
rized from the BSE property-labeled issues. We identify five primary
resolution strategies: upgrade library, change library, code change,
disable strong encapsulation enforcement, and downgrade Java ver-
sion. Upgrade library addresses issues by adopting newer library
versions that incorporate fixes for BSE-related problems. Change
library involves adopting alternative libraries that comply with
strong encapsulation principles. Developers implementing code
change make direct modifications to the project’s source code. As
detailed in Section 2.2, disable strong encapsulation enforcement en-
compasses various ways to break encapsulation. Finally, downgrade
Java version involves reverting to pre-Java 9 versions, particularly
Java 8, which lacks strong encapsulation enforcement.

Resolution Recommendation includes user-recommended res-
olution and developer-planned resolution. User-recommended reso-
lution represents resolutions proposed and discussed by GitHub
project users, while developer-planned resolution includes future
tasks outlined by open-source project members to address BSE is-
sues. A developer-planned resolution is contributed by open-source
project members specifying future tasks, including outlining a res-
olution for future applications for addressing BSE issues. Finally,
Actual Resolution Selected indicates the implemented resolu-
tions related to corresponding BSE-related issues, demonstrating
the developers’ final choice among available resolution strategies.

6 Result and Analysis

During the open-coding process described in Section 3, we assigned
each GitHub issue one or more of four labels identified through the
process: Report BSE warning (980 issues), Report Exception/Er-
ror (296 issues), Developer-Planned Resolution (88 issues), and
User-Recommended Resolution (15 issues). We also identified
BSE instances based on three recurring patterns (--add-exports,
--add-opens, and BSE warning) to facilitate efficient information

extraction. Based on the research questions described in Section 4,
we developed the BSE taxonomy shown in Figure 6. We now present
and discuss the results of our study.

6.1 ROQ1: BSE Problem Symptoms

6.1.1 Study Result. Among our 1,454 BSE property-labeled issues,
980 issues (67.40%) report BSE warnings. Such BSE warnings are
triggered by the --illegal-access=(permit|warn|debug) argu-
ment, which was disabled by default in Java 16 and is no longer
supported in Java 17. Consequently, these BSE warnings can esca-
late into errors and exceptions [22, 23, 38] as discussed in Section 2.2.
Additionally, 296 out of 1,454 (20.36%) BSE property-labeled issues
report exceptions or errors, with 283 (95.61%) containing detailed
information about the exceptions or errors, i.e., stack traces. With
that detailed information, we identified the following three most
prevalent exceptions and errors:

e java.lang.reflect.InaccessibleObjectException (168 issues)
e java.lang.IllegalAccessError (71 issues)
e java.lang.IllegalAccessException (34 issues)

Q Finding 1: In our study, 980 BSE issues report BSE warnings,
surpassing the number of issues reporting errors and exceptions.
This observation indicates that users and developers are facing
a significant number of BSE warnings, and they are trying to ac-
tively address potential errors and exceptions before they manifest
by submitting GitHub issues.

Furthermore, to evaluate how different JDK versions enforce
strong encapsulation to varying degrees, we count the number of
issues of different BSE symptoms in our dataset across JDK versions,
as depicted in Figure 7. The vertical axis represents the frequency
of each BSE problem type (i.e., BSE warning or error/exception),
while the horizontal axis displays the corresponding JDK version.

For BSE warnings, JDK 11 exhibited the highest frequency of
associated BSE issues (347), likely due to it being the first Long-
Term-Support (LTS) version to include JPMS. Additionally, JDK 9
exhibits a high frequency of BSE issues (154) due to its status as the
first version to adopt JPMS.

Regarding errors or exceptions, the majority of reports were
concentrated on JDK 16 (88 issues) and JDK 17 (92 issues). JDK

Breaking Strong Encapsulation: A Comprehensive Study of Java Module Abuse

400
Abuse Category

EEm BSE Warning

350
B Error and Exception

300
250
200

150

Count of Abuse Issues

100

50

¢ ¢

© Q " g “J > “ o A J J
Q*' R R T S S S SR SO e o

S N
JDK Version

Figure 7: Counts of BSE Warnings and Error/Exception Issues
Across JDK Versions

17 exhibited the highest rate of errors, which is sensible for two
reasons: (1) JDK 17 is the first version for which the --illegal-
access option is deprecated, and (2) JDK 17 is an LTS version which
many JDK applications and platforms are likely to use. Although
JDK 16 is not an LTS version, it is the first version for which the
--illegal-access option is disabled by default; as a result, strong
encapsulation of illegal reflective access is enforced by default. This
suggests a tendency among users or developers of the projects in our
study to rely, possibly excessively, on default settings, especially for
JDK versions before 16, i.e., versions that may warn but not enforce
strong encapsulation by default. Consequently, such projects do not
adopt resolutions that actually solve BSE problems, which we will
discuss further for RQ4; instead, they often let BSE warnings evolve
into errors or exceptions that lead to project failure at runtime. The
decision of not fixing BSE problems or not replacing problematic
dependency libraries increases architectural technical debt, where
users or developers rely on disabling enforcement, but pay the price
later when addressing errors and exceptions.

Q Finding 2: JDK 11 and JDK 17 exhibit the highest frequencies
of issues related to BSE warnings and errors/exceptions, respec-
tively. Notably, JDK 16 demonstrates a significant increase in
error/exception issues (88), indicating widespread dependency
on JDK’s default settings that trigger BSE warnings. These BSE
warnings, reported across 980 BSE issues, indicate the presence
of architectural technical debt that subsequently evolves into
runtime failure.

6.2 RQ2: Abuse Source

6.2.1 BSE Instances Result. Building upon our findings from RQ1
(Section 6.1), which demonstrated developers’ concerns regarding
BSE warnings, we conducted an automated analysis to detect BSE
warning instances across our dataset. Our analysis revealed 4,720
instances of BSE warnings distributed across 2,366 distinct BSE
issues. Notably, 3,485 instances (73.8%) were attributed to external
sources, indicating that the majority of the issues involving BSE
problems stem from external dependencies, as opposed to issues
originating within the GitHub projects themselves.

ICSE *26, April 12-18, 2026, RIO DE JANEIRO, BRAZIL

Table 2: Overview of Target Instance Analysis

Keyword # Instances # Covered GitHub
Issues
--add-exports 5,683 638
--add-opens 6,174 1,032

We also automatically classified the source module performing
BSE abuse as either an unnamed module or a named module, analyz-
ing both --add-exports and --add-opens options. Table 2 shows
the number of instances and corresponding GitHub issues, reveal-
ing high abuse frequency with an average of 8.91 --add-exports
and 5.98 --add-opens instances per issue.

Q Finding 3: In 4,900 out of 5,683 BSE instances (86.22%) that in-
volve --add-exports, the source modules are unnamed modules
(refer to Section 2.1.2). Furthermore, among 6,174 --add-opens
instances, 6,001 (97.20%) involve unnamed modules attempting to
reflectively access internal components. These findings suggest
that the abusive code often does not reside within any named
Java modules and that poorly modularized code in the modern
Java ecosystem tends to be code that abuses other Java modules.

6.2.2 BSE Property-Labeled Issues Result. Through the open-coding
process, we identified the source of BSE issues to understand the
cause of BSE problems. Out of 1,454 examined BSE issues, 1,104
were identified as originating from external sources, a finding that
corresponds closely with our analysis of BSE warning instances
discussed in Section 6.2.1. Particularly, for BSE errors and excep-
tions, 195 out of 296 issues were attributed to external failures. This
result highlights the severe implications of problems that arise from
inadequate responses to the enforcement of strong encapsulation.

Q Finding 4: Among all BSE instances, third-party libraries
are the root cause behind 73.83% (3,485 out of 4,720 instances) of
the BSE warning instances. Similarly, 75.93% (1,104 out of 1,454
issues) of the BSE property-labeled issues were identified as ex-
ternal issues. This reveals that the majority of projects that break
Java modules’ strong encapsulation originate from their depen-
dencies on third-party libraries, illustrating how BSE, as a form of
architectural decay that introduces technical debt, can propagate
throughout project dependency chains within the ecosystem.

From the previous finding, we find that BSE abuse sources are
particularly prevalent in the case of external project scope, espe-
cially with respect to third-party libraries. Our analysis further
reveals that unnamed modules constitute the primary abuse source,
with a notable tendency for generating BSE errors and exceptions:

Q Finding 5: Our analysis of BSE errors and exceptions shows
that 88.85% (263 out of 296) of issues stem from unnamed modules
attempting to access internal packages of other modules, while
only 5.07% (15 out of 296) originate from named modules. This
finding aligns with Finding 3, indicating that monolithic, poorly
modularized unnamed modules are more prone to BSE problems.

6.3 RQ3: Abuse Target

Having examined the sources of BSE abuse, we now investigate
their abused targets.

ICSE *26, April 12-18, 2026, RIO DE JANEIRO, BRAZIL

6.3.1 BSE Instance Result. We developed an automated approach
to identify internal package dependencies by extracting two key
elements: (a) the target module and (b) the internal package accessed,
i.e., the target package, for both --add-exports and --add-opens
options. Table 2 presents the number of these abuse instances and
their corresponding GitHub issues, with each issue containing an
average of more than 5 instances.

As shown in Table 3, the java.base module, which provides
core APIs for the Java SE Platform [25, 35], exhibits the highest
frequency of abuse access attempts across all 1,351 GitHub reposito-
ries. Among all BSE instances analyzed, 35.10% (1,995 out of 5,683)
of —--add-exports instances target the java.base module. Simi-
larly, 68.32% (4,218 out of 6,174) of --add-opens instances access
the java.base module to reach APIs not intended for public use.

To better understand the abused instances that target the java.
base module, we identified the three most frequently targeted pack-
ages for both --add-exports and --add-opens operations. The
results are presented in Table 3. For each package, we show its
capabilities and potential misuse through representative example
classes for exports and official package descriptions for opens. For
packages being exported from java.base, we selected representa-
tive example classes based on developer discussions from online
platforms such as Stack Overflow [46]. This selection approach
was necessary because unexported JDK packages lack official doc-
umentation, as they are intended solely for internal JDK use. The
analysis of opens reveals that the three most frequently targeted
packages are java.lang, java.util, and java.io. While these
packages are officially exported [31] and their public elements (i.e.,
variables and functions) are accessible to dependent modules, their
private elements remain encapsulated. However, the --add-opens
option breaks encapsulation by enabling runtime access to private
members, violating both module encapsulation and the principle of
information hiding [58]. Such abusive access to private members
of system classes can lead to severe security consequences [69].

Q Finding 6: Within java.base, the most frequently ac-
cessed internal packages through exports—jdk. internal.misc,
jdk.internal.ref, and sun.security.util—are primarily
used for unauthorized low-level operations (e.g., CPU feature
access [57]) and bypassing standard JVM mechanisms (e.g., cre-
ating unverified anonymous classes [57]). These usages deviate
from the platform’s intended behavior. In contrast, the most fre-
quently abused packages via opens in java.base—java.lang,
java.util, and java.io—are already publicly exported pack-
ages. This pattern suggests widespread developer attempts to
gain reflective runtime access to non-public elements of exported
packages, violating fundamental software engineering principles
of information hiding [58, 69].

In addition, we analyzed the specific APIs accessed through
reflection and their intended functionalities. Our analysis focuses
on runtime reflective access instances (i.e., BSE warnings). The
five most frequently accessed APIs are presented in Table 4. The
high frequency of abused target instances indicates a misalignment
between Java modules’ design and developer requirements. This
information can guide researchers in developing automated tools
for program repair when replaceable APIs exist [19]. In cases where

Yirui He, Yongbo Chen, Jessy Ayala, Yecheng Zhou, Qiran Wang, and Joshua Garcia

suitable alternatives are not available, these instances highlight
opportunities for practitioners to develop new libraries that address
the identified gaps. This systematic understanding of API usage
patterns can inform future improvements to Java modules that
better align API design with developer needs, ultimately enhancing
system integrity, security, and usability.

Q Finding 7: The illegally accessed JDK internal APIs shown
in Table 4 exemplify critical Java mechanisms for class loading,
memory management, reflective method invocation, buffer han-
dling, and data structure implementation. These APIs embody
critical aspects of Java’s implementation to security, performance
optimization, and low-level system interactions. While these in-
ternal APIs are explicitly restricted from public use, their frequent
abusive access highlights a tension between the modules’ encap-
sulation boundaries and developers’ practical requirements.

6.4 RQ4: BSE Resolution

The prevalence of BSE issues in the open-source ecosystem per-
sists, despite the considerable time elapsed since the introduction
of JPMS. Addressing these issues while maintaining adherence to
JPMS strong encapsulation principle requires understanding the un-
derlying challenges. Our analysis of open-source projects examines
the resolution patterns of these encapsulation violations.

Our analysis of BSE resolutions focuses on two specific types
of pre-identified issues that provide detailed resolution informa-
tion: Developer-Planned Resolutions and User-Recommended
Resolutions. We selected these resolution-centric issues instead
of studying all resolved BSE-related issues (i.e., GitHub issues with
“closed status”) because these two categories of issues not only pro-
posed resolutions and adopted approaches, but also the underlying
discussions and decision-making processes. This rich contextual
information enables a more comprehensive understanding of BSE
mitigation strategies compared to issues that merely report BSE
warnings, errors, or exceptions without elaborating on resolution
approaches (e.g., issue#178 [3] and #3099 [15]).

6.4.1 Study Result. Our analysis of 103 issues containing Reso-
lution Recommendations revealed that disable strong encapsu-
lation enforcement was the most frequently proposed resolution,
occurring in 66 BSE issues. This category comprises 56 BSE issues
with developer-planned resolutions and 10 with user-recommended
resolutions. The remaining strategies were less prevalent for rec-
ommended resolutions—with 17 issues using upgrade library, 4
issues using code change, 3 issues using change library, and 2 is-
sue using downgrade Java version. However, examination of the
Actual Resolutions Adopted by project maintainers revealed a
different distribution. Only 35 cases implemented disable strong
encapsulation enforcement, with 32 BSE issues originating from
developer-planned resolutions and 3 from user-recommended reso-
lutions. Notably, code change was adopted in 38 cases, comprising
31 developer-planned resolutions and 7 user-recommended resolu-
tions. The remaining cases were resolved through upgrading library
(23 BSE issues), changing library (5 BSE issues), and downgrading
Java version (1 BSE issue).

The adoption of provisional fixes such as disabling strong encap-
sulation enforcement or downgrading the Java version can lead to

Breaking Strong Encapsulation: A Comprehensive Study of Java Module Abuse

Table 3: Top 3 Most Frequently Abused Packages in the java.base Module

ICSE *26, April 12-18, 2026, RIO DE JANEIRO, BRAZIL

Argument Package Representative Example Classes for Undocumented Packages (Top-3 # of Abused # of Abused
Packages) / Official Package Description (Bottom-3 Packages) Instances per Instances of
Package java.base
jdk.internal.misc Unsafe class from package jdk.internal.misc allows developers to directly 143
access CPU and other hardware features, create an object but not run its constructor
or manually manage off-heap memory [57].
jdk.internal.ref Cleaner is a lightweight alternative to finalization and should only be used for 140
--add-exports simple cleanup tasks to avoid blocking the reference-handler thread [5]. 1,995
sun.security.util Cache is a key-value mapping class that provides memory-based caching [43]. 99
java.lang java.lang contains classes fundamental to the Java programming language 852
architecture. Key among these are Object, the root of the class hierarchy, and
Class, whose instances represent classes at runtime [28].
java.util The java.util package contains the collections framework, various utility classes, 556
--add-opens and legacy classes [30]. 4,218
java.io The java.io package provides functionality for system input and output 434
operations, including data streams, serialization, and file system interactions [27].
Table 4: Top 5 Most Frequently Abused APIs
APIL Description # of Abused
Instances
java.lang.ClassLoader.defineClass Converts a byte array to a Class instance with a ProtectionDomain, defining security attributes for class groups. 575
(java.lang.String,byte[],int,int, The ProtectionDomain class defines the attributes of a domain that encloses a collection of classes. Instances of
java.security.ProtectionDomain) these classes are granted a predetermined set of permissions during execution [4].
java.lang.Object.finalize() Called by the garbage collector when an object is no longer referenced. It has been deprecated since Java 9 due to its 177
potential to cause performance problems, deadlocks, and resource leaks [36].
java.lang.invoke.MethodHandles$Lookup In the handle construction, a lookup object acts as a factory, enabling controlled access where direct public 121
(java.lang.Class,int) constructors are not available [34].
java.nio.Buffer.address Supports Unsafe access for heap and direct byte buffers, representing relative or start addresses of memory 94
regions [29].
java.util.TreeMap.comparator Maintains element order in TreeMap. Retrievable via the public method, suggesting potential developer attempts to 89
modify existing TreeMap comparators [47].

significant challenges and require extensive effort from downstream
developers to address the underlying issue effectively in the future
(e.g., if they end up needing newer Java features or patches). These
decisions not only increase technical debt within the project—e.g.,
as enabling strong encapsulation or supporting newer Java versions
will likely be more difficult as the project evolves and becomes re-
liant on BSE abuse—but also have the potential to affect the entire
ecosystem adversely, as shown in Figure 1.

Q Finding 8: Our analysis reveals a discrepancy between rec-
ommended and implemented resolution strategies. While disable
strong encapsulation enforcement was the predominant recom-
mendation (66 issues), the actual implementations show equal
distribution between code change (38 issues) and disable strong en-
capsulation enforcement (35 issues). This pattern indicates that ini-
tial recommendations prioritize quick resolution to eliminate BSE
warnings, errors, and exceptions, whereas project maintainers of-
ten implement fixes that adhere to strong encapsulation principles.
This implementation choice reflects maintainers’ commitment to
addressing BSE issues while maintaining system integrity.

6.4.2 Representative BSE Resolution Examples. 1dentifying BSE
fixes is challenging for two reasons: (1) Commit or pull request
messages may not explicitly convey the overarching objective; and
(2) developers may lack a clear understanding of their actions or
the importance of strong encapsulation, as exemplified in Case 1
below. In contrast, a successful example of re-implementing and
removing the problematic dependency is shown in Case 2 below.
Case 1 illustrates scenarios in which developers of Lombok, a
Java library that simplifies Java development through language

enhancements and annotations, might believe they properly sup-
port JDK 16—which is not entirely true—since they still break the
JDK modules’ strong encapsulation. In a commit entitled “[fixes
#2681] [jdk16] support jdk16,” that aims to address issue #2681 [8],
Lombok developers aim to fix Lombok’s encapsulation violations.
The issue involves 95 comments, including a discussion involving
a JDK developer and 3 Lombok developers, with the most upvoted
comment, posted by the JDK developer, receiving over 110 upvotes
and the most upvoted comment from a Lombok developer reaching
nearly 50 upvotes. Although the time between the opening of the
issue and its closing was 91 days (December 15, 2020 to March 16,
2021), over three years later, the issue was still receiving additional
comments and mentions quite frequently until August 20, 2024.
The impact of this Lombok issue extends beyond the context, as
evidenced by a related issue in the JDK Bug System [39], a JIRA
instance for tracking JDK bugs. As shown in Figure 8, the attempted
solution by Lombok developers for issue #2681 likely involves ma-
nipulating the JDK inappropriately. This extensive discussion and
controversy surrounding the Lombok issue #2681 showcase the
immense challenge and tension arising from the BSE problem.
The conversation also highlights the tension between JDK devel-
opers and Lombok developers, as JDK developers prioritize main-
tainability and security, while Lombok developers oppose these
restrictions, arguing that they impose unnecessary burdens on tool
maintainers and disrupt compatibility without achieving their in-
tended security goals. This case demonstrates the need for develop-
ers to understand and adhere to JPMS strong encapsulation princi-
ples for maintaining Java ecosystem integrity. Unauthorized access
to undocumented internal APIs introduces potential instability, as
changes to these APIs can propagate defects through dependent

ICSE *26, April 12-18, 2026, RIO DE JANEIRO, BRAZIL

code. Such violations of strong encapsulation increase maintenance
costs through additional testing, debugging, and repair efforts.

JDK/JDK-8264582: Possible to use sun.misc.Unsafe to hack JDK
and circumvent JEP 396: With JEP 396, all illegal-access operations are
disabled, “except for those enabled by other command-line options, e.g.,
--add-opens". However, it’s possible for Java code to enable such
operations without having to specify the appropriate command-line
options. Link to hack: https://github.com/rzwitserloot/lombok/commit/
9806e5cca4b449159ad0509dafde81951b8a8523

Figure 8: Issue from the JDK Repository [39]

Case 2 exemplifies a successful resolution of JDK misuse in the
code generation library cglib [41], a dependency of Guice [12]. This
dependency-related issue in Issue #1133 [13] required significant
codebase modifications and remained unresolved for three years,
attracting over 60 stakeholders to the discussion. The issue’s criti-
cality is further evidenced by its continued references in discussions
two years after closure. This extended resolution period reflects
both the technical complexity and the issue’s significance to the
development community, with multiple stakeholders documenting
extended wait times, including one case of approximately three
years before the underlying problem was addressed.

The implementation of two functionalities previously provided
by cglib progressed from an initial prototype [40] to a final solu-
tion [7]. The development spanned 7 months, encompassing 125
commits that modified 36 files with 2,965 additions and 683 dele-
tions. This extensive refactoring effort demonstrates the complexity
of addressing BSE problems and their propagation through depen-
dency chains. The team ultimately eliminated the unmaintained
cglib dependency while achieving compliance with strong encap-
sulation principles, demonstrating that internal API dependencies
can be replaced with stable, documented alternatives.

7 Discussion

7.1 Implications

In this section, we emphasize the importance of developers focus-
ing on proper modularization and API design to enhance system
maintainability. For researchers, we highlight the need to improve
JPMS module interface design and develop automated tools for
detecting and repairing BSE violations.

For practitioners: The adoption of JPMS presents two primary
challenges: designing module interfaces appropriately and utilizing
other Java modules properly.

Many open-source practitioners reported BSE warnings at an
early stage (Finding 1). However, they did not fix the issue until
BSE warnings became errors and exceptions (Finding 2). Although
Finding 8 reveals that project maintainers tend to seek more main-
tainable resolutions when the BSE problem and resolutions are
explicitly discussed, many project developers are still opting for
provisional resolutions (e.g., disable strong encapsulation enforce-
ment) to eliminate exceptions and errors.

While disabling strong encapsulation can resolve BSE warn-
ings, errors, or exceptions and restore program functionality (as
discussed in Section 2.2 and Section 6.4), the preference for such
fixes over permanent solutions impedes improving ecosystem secu-
rity and robustness. As demonstrated in Figure 1, disabling strong

Yirui He, Yongbo Chen, Jessy Ayala, Yecheng Zhou, Qiran Wang, and Joshua Garcia

encapsulation does not prevent error propagation throughout the
ecosystem, potentially amplifying the underlying issues.

Our study further demonstrates the proliferation of technical
debt (Finding 4): as the JDK increasingly enforces strong encapsu-
lation, developers need to allocate substantial resources to identify
and resolve dependency-induced defects. Given that strong encap-
sulation is designed to improve modularity, security, and main-
tainability [56], we recommend that practitioners systematically
investigate the root causes of BSE violations and strictly adhere
to encapsulation constraints, thereby mitigating security risks and
preventing technical debt accumulation.

Our observations (Finding 6, 7 and Case 1) highlight an ongoing
tension between Java module developers and module consumers.
While module developers enforce encapsulation to preserve system
integrity and security, module consumers frequently require access
to internal APIs and non-public types—precisely the components
that module developers deliberately restrict. To address this issue,
we encourage module developers to adopt a systematic approach to
API design that achieves an optimal balance between encapsulation
and availability, thereby maintaining system reliability and security
while accommodating legitimate consumer requirements.

We also propose that practitioners systematically modularize
their Java codebases. Empirical evidence from Finding 3 and Find-
ing 5 demonstrates that unnamed modules constitute the majority
source of Java module abuse cases. When modules’ internal APIs
are exposed through --add-exports or --add-opens to unnamed
modules, they substantially increase their security vulnerability sur-
face, enabling potentially malicious code within unnamed modules
to access protected internal components. Furthermore, only 19.8%
of existing Java modules have descriptors with stable names [44].
Module name modifications can introduce breaking changes in
dependent projects that requires the module, potentially trigger-
ing unexpected behavior throughout the dependency chain. This
low stability rate emphasizes the importance of establishing and
maintaining stable modules with declared interfaces.

Finally, we recommend that practitioners leverage collective
knowledge to address BSE-related challenges by examining peer-
validated solutions that achieve equivalent functionality while
maintaining module integrity. By adopting community-driven so-
lutions, developers can eliminate encapsulation problems more
effectively, preventing the further spread of technical debt.

For researchers: As many BSE instances emerge only during
runtime, indicated by BSE warnings, errors, or exceptions, imple-
menting early detection through static analysis, coupled with auto-
mated repair mechanisms, could significantly aid in adopting JPMS
and facilitate the overall migration process. For example, Darcy [60]
demonstrates the potential for automated detection and repair of
inconsistencies between implementation code (i.e., descriptive ar-
chitecture) and module descriptor (i.e., prescriptive architecture).
However, such tools must carefully balance strict encapsulation
enforcement with ecosystem compatibility to prevent disruption of
downstream dependencies. Moreover, in addition to the automation
of the migration process, identifying effective strategies for modu-
larizing Java projects presents another significant challenge. This
challenge involves determining both the optimal arrangement of
classes within Java modules [67] and designing module interfaces

 https://github.com/rzwitserloot/lombok/commit/9806e5cca4b449159ad0509dafde81951b8a8523
 https://github.com/rzwitserloot/lombok/commit/9806e5cca4b449159ad0509dafde81951b8a8523

Breaking Strong Encapsulation: A Comprehensive Study of Java Module Abuse

that balance appropriately between system usability and quality
attributes such as reliability, security, and maintainability.

7.2 Limitations and Threats to Validity

Internal threats. The primary internal threat to validity involves
subjective bias or errors in comprehending and classifying BSE
issues for the manual analysis of our methodology. To mitigate this
risk, our open-coding process establishes classification schemes
that follow the methodology adopted by the existing literature [59,
65, 70, 73]. More specifically, each GitHub issue is independently
reviewed and labeled by two authors. When discrepancies between
the two researchers emerged, they were resolved through discus-
sion until consensus was achieved. Another internal threat comes
from the comprehensiveness of automated BSE instance analysis.
We mitigate this threat by summarizing the patterns from four
thousand GitHub issues. The BSE instance detector contains all the
summarized patterns we observed while examining the issue. An-
other internal threat arises from the number of resolution-oriented
issues. While the filtering process ensures a comprehensive record
that captures concrete resolution strategies, it may also bias our find-
ings toward issues where developers or users were more proactive
in documenting possible fixes. The final internal threat is concerned
with the data collection process, which requires high-quality and
comprehensive data. We balanced the quantity and quality of the
data by only retrieving GitHub issues containing keywords that
can break the strong encapsulation of Java modules, as found from
the official documentation [37, 50, 52].

External threats. One external threat is the generalizability of
the dataset and the findings derived. To mitigate this threat, we
systematically collected all GitHub issues from popular and actively
maintained open-source projects that met our selection criteria, i.e.,
as described in our methodology. The selected projects demonstrate
significant development activity and community engagement, with
mean values of 339,144 LOC, 2,311 stars, 701 forks, 1,124 issues, and
5,442 commits. Our final dataset comprises 4,079 unique GitHub
issues from 1,351 distinct repositories, which is comparable to prior
studies investigating other types of bugs [59, 65, 70, 94].

8 Related Work

JPMS. Several tools address distinct challenges in JPMS: OO2CB [67]
transforms object-oriented designs into component-based architec-
tures using least-privilege modularization principles. Darcy [60, 62]
handles redundant dependencies through automated detection and
repair. Acadia [61] enables runtime architectural adaptation with-
out code modifications, ModGuard [55] prevents unauthorized data
access via dependency analysis, and Mondal et al. [81] facilitates
maintenance through semantic slicing. However, none of the exist-
ing studies on JPMS have studied the specific challenges brought
forth by strong encapsulation, i.e., the BSE problem in our work.

Other Component-Based Architecture. The only existing frame-
work similar to JPMS is OSGi [49]. OSGi differs from JPMS in many
aspects: Firstly, OSGi lacks the capability to manage reflective-
only access to internal packages of modules, a situation where
the --add-opens option is frequently utilized to enable runtime
access [60, 62]. Secondly, while JPMS emphasizes strong encap-
sulation at both compile-time and run-time. OSGi is limited to

ICSE *26, April 12-18, 2026, RIO DE JANEIRO, BRAZIL

dynamic package resolution; this can only be determined when
a bundle layer is created [48], absent a similar mechanism to --
add-export with static access management. Consequently, these
limitations invalidate OSGi from applicability within our JPMS-
related research. Despite these differences, previous work [66]
has highlighted issues that arose or whose importance was mag-
nified through implementing or using the OSGi framework. For
example, OSGi has inflexible package sharing, where a package
can only be private or public to all bundles, unlike JPMS modules.
As shown in Figure 2, org. junit.platform.commons can export
package org. junit.platform.commons.logging to org.junit.
platform.engine, which indicates the package is inaccessible to
other Java modules.

Health of Java Software Ecosystems. Recent studies have ad-
vanced our understanding of Java libraries, dependency manage-
ment, and the complexities of Java-based ecosystems. These in-
vestigations span various domains, including dependency con-
flicts [75, 96-98], library migrations [64, 68, 71, 95], compilation
processes [80], and language features [53, 72, 79, 100]. They have
explored security risks [77, 95, 99], the rationale behind devel-
oper actions [68, 100], and introduced frameworks [80], automated
tools [75, 96, 97, 99], empirical solutions [98], and practical in-
sights [64, 77, 95] to address these challenges. Despite this exten-
sive research on ecosystem health, the challenge posed by JPMS—
which we systematically explore in this work—remains largely
unaddressed in existing literature.

9 Conclusion and Future Work

To better understand architectural decay in Java modules, we con-
ducted the first comprehensive empirical investigation of the BSE
problem, analyzing symptoms, source, target, and resolution in
open-source projects. Our examination of 4,079 GitHub issues re-
vealed that over 70% of BSE instances stem from external dependen-
cies. Our findings underscore the pervasive nature of BSE problems
and their impact on Java development, particularly regarding migra-
tion and maintainability. Based on our quantitative and qualitative
analysis, we present recommendations for (1) practitioners imple-
menting JPMS-based projects adhering to strong encapsulation and
(2) researchers developing techniques for BSE detection and repair.

Our future work includes an interview study exploring develop-
ers’ experiences with BSE problems, aiming to uncover challenges,
solutions, and underlying rationales. This qualitative investigation
will complement our current findings by providing deeper insights
into practitioners’ perspectives and contextual factors. This inves-
tigation will contribute to the understanding of BSE issues and
facilitate the development of generalizable solutions to benefit the
Java community.

Acknowledgments

We sincerely appreciate Prof. André van der Hoek and Prof. Sam
Malek for their constructive feedback and support. We are also
thankful to the anonymous reviewers and others who provided
insightful and valuable comments. The authors gratefully acknowl-
edge the support of NSF 2443763.

ICSE

’26, April 12-18, 2026, RIO DE JANEIRO, BRAZIL

References

(1]
[2]
(3]
[4]

[5]

=
2

—_
_

==
)

(14

[15

[16]

(17

(18]

(19]

S
N2 S

N
&

2023. GitHub: Let’s build from here — github.com. https://github.com. (Accessed
20-09-2023).

2024. Artifact of Breaking Strong Encapsulation: A Comprehensive Study of
Java Module Abuse. https://figshare.com/s/8031e14136fd008c4840,.

2024. Cannot work with JDK 16? #178. https://github.com/xvik/dropwizard-
guicey/issues/178. (Accessed on 13-03-2024).

2024. ClassLoader. https://github.com/openjdk/jdk/blob/
62a4544bb76aa339a8129f81d2527405a1ble7e3/src/java.base/share/classes/
java/lang/ClassLoader.java. (Accessed on 04-10-2024).

2024. Cleaner. https://github.com/AdoptOpenJDK/openjdk-jdk9u/blob/master/
jdk/src/java.base/share/classes/jdk/internal/ref/Cleaner.java. (Accessed 04-02-
2024).

2024. Code on the Class Path - the Unnamed Module. https://dev.java/learn/
modules/unnamed-module/. (Accessed 04-02-2024).

2024. Commit Import #1298. https://github.com/google/guice/commit/
85e30beafe55551a649025d3c12e831214057412. (Accessed on 13-03-2024).

2024. [fixes #2681] [jdk16] support jdk16. https://github.com/projectlombok/
lombok/commit/9806e5ccadb449159ad0509dafde81951b8a8523. (Accessed on
13-03-2024).

2024. GitHub REST API documentation. https://docs.github.com/en/rest. (Ac-
cessed 30-01-2024).

2024. google-java-format. https://github.com/google/google-java-format. (Ac-
cessed 30-01-2024).

2024. google-java-format (and removeUnusedImports) broken on JDK 16+ (has
workaround) #834. https://github.com/diffplug/spotless/issues/834. (Accessed
30-01-2024).

2024. Guice. https://github.com/google/guice. (Accessed on 13-03-2024).

2024. llegal reflective access by com.google.inject.internal.cglib.core.Re flect U tils1.

https://github.com/google/guice/issues/1133. (Accessed on 13-03-2024).

2024. Introduction to the Service Provider Interfaces. https://docs.oracle.com/
javase/tutorial/sound/SPI-intro.html. (Accessed on 8-09-2024).

2024. issue #3099. https://github.com/square/retrofit/issues/3900. (Accessed on
04-10-2024).

2024. issue #4694. https://github.com/oracle/graal/issues/4694. (Accessed on
04-10-2024).

2024. JAR. https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jarGuide.
html. (Accessed on 04-10-2024).

2024. Java 9 Migration Guide: The Seven Most Common Challenges. https:
//nipafx.dev/java-9-migration-guide/. (Accessed 30-01-2024).

2024. Java Dependency Analysis Tool. https://wiki.openjdk.org/display/
JDKB8/Java+Dependency+Analysis+Tool#JavaDependencyAnalysisTool-
Replaceusesofthe]DK’sinternal APIs. (Accessed on 24-09-2024).

2024. Java Platform, Standard Edition Tools Reference. https://docs.oracle.com/
javase/9/tools/java.htm#]SWOR624. (Accessed 01-02-2024).

2024. Java Platform, Standard Edition Tools Reference. https://docs.oracle.com/
javase/10/tools/java.htm#JSWOR624. (Accessed 01-02-2024).

2024. Java Platform, Standard Edition Tools Reference. https://docs.oracle.com/
en/java/javase/16/docs/specs/man/java.html. (Accessed 01-02-2024).

2024. Java Platform, Standard Edition Tools Reference. https://docs.oracle.com/
en/java/javase/17/docs/specs/man/java.html. (Accessed 01-02-2024).
2024. Java Platform, Standard Edition Tools Reference.
//docs.oracle.com/en/java/javase/11/tools/java. html#GUID-3B1CE181-
CD30-4178-9602-230B800D4FAE. (Accessed 01-02-2024).

2024. Java SE at a Glance. https://www.oracle.com/java/technologies/java-se-
glance. html. (Accessed 02-02-2024).

2024. javaguide. https://google.github.io/styleguide/javaguide.html. (Accessed
30-01-2024).

2024. java.io Package Summary. https://docs.oracle.com/javase/8/docs/api/java/
io/package-summary.html. (Accessed on 04-10-2024).

2024. java.lang Package Summary. https://docs.oracle.com/en/java/javase/11/
docs/api/java.base/java/lang/package-summary.html. (Accessed on 04-10-2024).
2024. java.nio.Buffer. https://github.com/openjdk/jdk/blob/
62a4544bb76aa339a8129f81d2527405al1ble7e3/src/java.base/share/classes/
java/nio/Bufferjava. (Accessed on 04-10-2024).

2024. java.util Package Summary. https://docs.oracle.com/en/java/javase/11/
docs/api/java.base/java/util/package- summary.html. (Accessed on 04-10-2024).
2024. jdk/src/java.base/share/classes/module-info.java. https:
//github.com/openjdk/jdk/blob/55¢1446b68db6c4734420124b526278389fdf2b/
src/java.base/share/classes/module-info.java#L77. (Accessed 04-02-2024).
2024. JUnit5. https://github.com/junit-team/junit5. (Accessed 04-02-2024).
2024. junit5/gradle.properties. https://github.com/junit-team/junit5/blob/
46d0f80dbod6fc5faced28e9827683a09¢7f8fb9/gradle.properties. (Accessed 30-
01-2024).

2024. MethodHandlesLookup. https://github.com/openjdk/jdk/blob/master/src/
java.base/share/classes/java/lang/invoke/MethodHandles.java. (Accessed on
04-10-2024).

https:

Yirui He, Yongbo Chen, Jessy Ayala, Yecheng Zhou, Qiran Wang, and Joshua Garcia

[35]

[36]

[37]

[38]

[39

[40]

[41]

[42]

[43]

[44

[45

[46
[47

[48]

[49

[50]

[51

[52

[53]

[54]

[55

[56

[57]

[58

[59

[60

[61

[62

[63

2024. Module java.base. https://download.java.net/java/early_access/valhalla/
docs/api/java.base/module-summary.html. (Accessed 02-02-2024).

2024. Object. https://github.com/openjdk/jdk/blob/
62a4544bb76aa339a8129f81d2527405al1ble7e3/src/java.base/share/classes/
java/lang/Object java. (Accessed on 04-10-2024).

2024. Oracle JDK Migration Guide. https://www.overleaf.com/project/
656fF56130c3fa4c526b8808. (Accessed 30-01-2024).

2024. A peek into Java 17: Encapsulating the Java runtime in-
ternals. https://blogs.oracle.com/javamagazine/post/a-peek-into-java-17-
continuing-the-drive-to-encapsulate\-the-java-runtime-internals. (Accessed
31-01-2024).

2024. Possible to use sun.misc.Unsafe to hack JDK and circumvent JEP 396. https:
//bugs.openjdk.org/browse/JDK-8264582?attachmentViewMode=list, (Accessed
on 13-03-2024).

2024. Prototype CGLIB replacement (Issue 1133). https://github.com/google/
guice/pull/1298. (Accessed on 13-03-2024).

2024. ReflectUtils java. https://github.com/cglib/cglib/blob/
9d67875290d269c9b1ff5e4f4bc578a9f05¢392¢/cglib/src/main/java/net/sf/
cglib/core/ReflectUtils java#L55. (Accessed on 13-03-2024).

2024. removeUnusedImports fails on Java 17 #871. https://github.com/diffplug/
spotless/issues/871. (Accessed 30-01-2024).

2024. Security. https://github.com/AdoptOpenJDK/openjdk-jdk9u/blob/master/
jdk/src/java.base/share/classes/sun/security/util/Cache.java. (Accessed on 04-
10-2024).

2024. sormuras/modules. https://github.com/sormuras/modules. (Accessed on
08-03-2024).

2024. Spotless: Keep your code spotless. https://github.com/diffplug/spotless.
(Accessed 30-01-2024).

2024. Stack Overflow. https://stackoverflow.com. (Accessed on 04-10-2024).
2024. TreeMap. https://github.com/openjdk/jdk/blob/
62a4544bb76aa339a8129f81d2527405a1ble7e3/src/java.base/share/classes/
java/util/TreeMap.java. (Accessed on 04-10-2024).

n.d.. Eclipse Equinox with Java Modules All the Way Down. https://www.eclipse.
org/community/eclipse_newsletter/2016/october/article3.php. (Accessed on
30-06-2024).

n.d.. OSGI Alliance. https://docs.osgi.org/specification/. (Accessed on 30-06-
2024).

Alan Bateman, Alex Buckley, Jonathan Gibbons, and Mark Reinhold. 2023. JEP
261: Module System — openjdk.org. https://openjdk.org/jeps/261. (Accessed on
29-06-2023).

Alex Buckley and Mark Reinhold. 2023. JEP 396: Strongly Encapsulate JDK
Internals by Default — openjdk.org. https://openjdk.org/jeps/396. (Accessed on
29-06-2023).

Alex Buckley and Mark Reinhold. 2023. JEP 403: Strongly Encapsulate JDK
Internals — openjdk.org. https://openjdk.org/jeps/403. (Accessed on 29-06-2023).
Casey Casalnuovo, Prem Devanbu, Abilio Oliveira, Vladimir Filkov, and
Baishakhi Ray. 2015. Assert use in github projects. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, Vol. 1. IEEE, 755-766.
John Cresswell. 2013. Qualitative inquiry & research design: Choosing among
five approaches.

Andreas Dann, Ben Hermann, and Eric Bodden. 2019. ModGuard: Identifying
Integrity & Confidentiality Violations in Java Modules. IEEE Transactions on
Software Engineering 47, 8 (2019), 1656-1667.

Paul Deitel. 2017. Understanding Java 9 Modules. https://www.oracle.com/
corporate/features/understanding-java-9-modules.html. (Accessed on 12-06-
2023).

Ben Evans. 2020. The Unsafe Class: Unsafe at Any Speed. https://blogs.oracle.
com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed. (Accessed 31-
01-2024).

David Farley. 2021. Modern Software Engineering: Doing What Works to Build
Better Software Faster. Addison-Wesley Professional.

Joshua Garcia, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia, and Qi Alfred
Chen. 2020. A comprehensive study of autonomous vehicle bugs. In Proceedings
of the ACM/IEEE 42nd international conference on software engineering. 385-396.
Negar Ghorbani, Joshua Garcia, and Sam Malek. 2019. Detection and repair
of architectural inconsistencies in java. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 560-571.

Negar Ghorbani, Joshua Garcia, and Sam Malek. 2024. Bringing architecture-
based adaption to the mainstream. Information and Software Technology 176
(2024), 107550.

Negar Ghorbani, Tarandeep Singh, Joshua Garcia, and Sam Malek. 2024. DARCY:
Automatic Architectural Inconsistency Resolution in Java. IEEE Transactions on
Software Engineering (2024).

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, and Daniel
Smith. 2017. The Java® Language Specification — docs.oracle.com. https:
//docs.oracle.com/javase/specs/jls/se9/html/index.html. (Accessed on 30-06-
2023).

https://github.com
https://figshare.com/s/8031e14136fd008c4840
https://github.com/xvik/dropwizard-guicey/issues/178
https://github.com/xvik/dropwizard-guicey/issues/178
https://github.com/openjdk/jdk/blob/62a4544bb76aa339a8129f81d2527405a1b1e7e3/src/java.base/share/classes/java/lang/ClassLoader.java
https://github.com/openjdk/jdk/blob/62a4544bb76aa339a8129f81d2527405a1b1e7e3/src/java.base/share/classes/java/lang/ClassLoader.java
https://github.com/openjdk/jdk/blob/62a4544bb76aa339a8129f81d2527405a1b1e7e3/src/java.base/share/classes/java/lang/ClassLoader.java
https://github.com/AdoptOpenJDK/openjdk-jdk9u/blob/master/jdk/src/java.base/share/classes/jdk/internal/ref/Cleaner.java
https://github.com/AdoptOpenJDK/openjdk-jdk9u/blob/master/jdk/src/java.base/share/classes/jdk/internal/ref/Cleaner.java
https://dev.java/learn/modules/unnamed-module/
https://dev.java/learn/modules/unnamed-module/
https://github.com/google/guice/commit/85e30beafe55551a649025d3c12e831214057412
https://github.com/google/guice/commit/85e30beafe55551a649025d3c12e831214057412
https://github.com/projectlombok/lombok/commit/9806e5cca4b449159ad0509dafde81951b8a8523
https://github.com/projectlombok/lombok/commit/9806e5cca4b449159ad0509dafde81951b8a8523
https://docs.github.com/en/rest
https://github.com/google/google-java-format
https://github.com/diffplug/spotless/issues/834
https://github.com/google/guice
https://github.com/google/guice/issues/1133
https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html
https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html
https://github.com/square/retrofit/issues/3900
https://github.com/oracle/graal/issues/4694
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jarGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jarGuide.html
https://nipafx.dev/java-9-migration-guide/
https://nipafx.dev/java-9-migration-guide/
https://wiki.openjdk.org/display/JDK8/Java+Dependency+Analysis+Tool#JavaDependencyAnalysisTool-ReplaceusesoftheJDK'sinternalAPIs
https://wiki.openjdk.org/display/JDK8/Java+Dependency+Analysis+Tool#JavaDependencyAnalysisTool-ReplaceusesoftheJDK'sinternalAPIs
https://wiki.openjdk.org/display/JDK8/Java+Dependency+Analysis+Tool#JavaDependencyAnalysisTool-ReplaceusesoftheJDK'sinternalAPIs
https://docs.oracle.com/javase/9/tools/java.htm#JSWOR624
https://docs.oracle.com/javase/9/tools/java.htm#JSWOR624
https://docs.oracle.com/javase/10/tools/java.htm#JSWOR624
https://docs.oracle.com/javase/10/tools/java.htm#JSWOR624
https://docs.oracle.com/en/java/javase/16/docs/specs/man/java.html
https://docs.oracle.com/en/java/javase/16/docs/specs/man/java.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/java.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/java.html
https://docs.oracle.com/en/java/javase/11/tools/java.html#GUID-3B1CE181-CD30-4178-9602-230B800D4FAE
https://docs.oracle.com/en/java/javase/11/tools/java.html#GUID-3B1CE181-CD30-4178-9602-230B800D4FAE
https://docs.oracle.com/en/java/javase/11/tools/java.html#GUID-3B1CE181-CD30-4178-9602-230B800D4FAE
https://www.oracle.com/java/technologies/java-se-glance.html
https://www.oracle.com/java/technologies/java-se-glance.html
https://google.github.io/styleguide/javaguide.html
https://docs.oracle.com/javase/8/docs/api/java/io/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/io/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/package-summary.html
https://github.com/openjdk/jdk/blob/62a4544bb76aa339a8129f81d2527405a1b1e7e3/src/java.base/share/classes/java/nio/Buffer.java
https://github.com/openjdk/jdk/blob/62a4544bb76aa339a8129f81d2527405a1b1e7e3/src/java.base/share/classes/java/nio/Buffer.java
https://github.com/openjdk/jdk/blob/62a4544bb76aa339a8129f81d2527405a1b1e7e3/src/java.base/share/classes/java/nio/Buffer.java
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/package-summary.html
https://github.com/openjdk/jdk/blob/55c1446b68db6c4734420124b5f26278389fdf2b/src/java.base/share/classes/module-info.java#L77
https://github.com/openjdk/jdk/blob/55c1446b68db6c4734420124b5f26278389fdf2b/src/java.base/share/classes/module-info.java#L77
https://github.com/openjdk/jdk/blob/55c1446b68db6c4734420124b5f26278389fdf2b/src/java.base/share/classes/module-info.java#L77
https://github.com/junit-team/junit5
https://github.com/junit-team/junit5/blob/46d0f80db0d6fc5faced28e9827683a09e7f8fb9/gradle.properties
https://github.com/junit-team/junit5/blob/46d0f80db0d6fc5faced28e9827683a09e7f8fb9/gradle.properties
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/lang/invoke/MethodHandles.java
https://github.com/openjdk/jdk/blob/master/src/java.base/share/classes/java/lang/invoke/MethodHandles.java
https://download.java.net/java/early_access/valhalla/docs/api/java.base/module-summary.html
https://download.java.net/java/early_access/valhalla/docs/api/java.base/module-summary.html
https://github.com/openjdk/jdk/blob/62a4544bb76aa339a8129f81d2527405a1b1e7e3/src/java.base/share/classes/java/lang/Object.java
https://github.com/openjdk/jdk/blob/62a4544bb76aa339a8129f81d2527405a1b1e7e3/src/java.base/share/classes/java/lang/Object.java
https://github.com/openjdk/jdk/blob/62a4544bb76aa339a8129f81d2527405a1b1e7e3/src/java.base/share/classes/java/lang/Object.java
https://www.overleaf.com/project/656ff56130c3fa4c526b8808
https://www.overleaf.com/project/656ff56130c3fa4c526b8808
https://blogs.oracle.com/javamagazine/post/a-peek-into-java-17-continuing-the-drive-to-encapsulate\-the-java-runtime-internals
https://blogs.oracle.com/javamagazine/post/a-peek-into-java-17-continuing-the-drive-to-encapsulate\-the-java-runtime-internals
https://bugs.openjdk.org/browse/JDK-8264582?attachmentViewMode=list
https://bugs.openjdk.org/browse/JDK-8264582?attachmentViewMode=list
https://github.com/google/guice/pull/1298
https://github.com/google/guice/pull/1298
https://github.com/cglib/cglib/blob/9d67875290d269c9b1ff5e4f4bc578a9f05c392e/cglib/src/main/java/net/sf/cglib/core/ReflectUtils.java#L55
https://github.com/cglib/cglib/blob/9d67875290d269c9b1ff5e4f4bc578a9f05c392e/cglib/src/main/java/net/sf/cglib/core/ReflectUtils.java#L55
https://github.com/cglib/cglib/blob/9d67875290d269c9b1ff5e4f4bc578a9f05c392e/cglib/src/main/java/net/sf/cglib/core/ReflectUtils.java#L55
https://github.com/diffplug/spotless/issues/871
https://github.com/diffplug/spotless/issues/871
https://github.com/AdoptOpenJDK/openjdk-jdk9u/blob/master/jdk/src/java.base/share/classes/sun/security/util/Cache.java
https://github.com/AdoptOpenJDK/openjdk-jdk9u/blob/master/jdk/src/java.base/share/classes/sun/security/util/Cache.java
https://github.com/sormuras/modules
https://github.com/diffplug/spotless
https://stackoverflow.com
https://github.com/openjdk/jdk/blob/62a4544bb76aa339a8129f81d2527405a1b1e7e3/src/java.base/share/classes/java/util/TreeMap.java
https://github.com/openjdk/jdk/blob/62a4544bb76aa339a8129f81d2527405a1b1e7e3/src/java.base/share/classes/java/util/TreeMap.java
https://github.com/openjdk/jdk/blob/62a4544bb76aa339a8129f81d2527405a1b1e7e3/src/java.base/share/classes/java/util/TreeMap.java
https://www.eclipse.org/community/eclipse_newsletter/2016/october/article3.php
https://www.eclipse.org/community/eclipse_newsletter/2016/october/article3.php
https://docs.osgi.org/specification/
https://openjdk.org/jeps/261
https://openjdk.org/jeps/396
https://openjdk.org/jeps/403
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://www.oracle.com/corporate/features/understanding-java-9-modules.html
https://blogs.oracle.com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed
https://blogs.oracle.com/javamagazine/post/the-unsafe-class-unsafe-at-any-speed
https://docs.oracle.com/javase/specs/jls/se9/html/index.html
https://docs.oracle.com/javase/specs/jls/se9/html/index.html

Breaking Strong Encapsulation: A Comprehensive Study of Java Module Abuse

(64]

(65]

[66

[68]

[69

[70

~
[y

[72

[73

(74

(75

<
S

(7]

[78

[79

(80

o0
&,

(88

Haiqiao Gu, Hao He, and Minghui Zhou. 2023. Self-Admitted Library Migra-
tions in Java, JavaScript, and Python Packaging Ecosystems: A Comparative
Study. In 2023 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 627-638.

Hao Guan, Ying Xiao, Jiaying Li, Yepang Liu, and Guangdong Bai. 2023. A
comprehensive study of real-world bugs in machine learning model optimization.
In Proceedings of the International Conference on Software Engineering.

Richard S Hall and Humberto Cervantes. 2004. An OSGi implementation and
experience report. In First IEEE Consumer Communications and Networking
Conference, 2004. CCNC 2004. IEEE, 394-399.

Mahmoud M Hammad, Ibrahim Abueisa, and Sam Malek. 2022. Tool-Assisted
Componentization of Java Applications. In 2022 IEEE 19th International Confer-
ence on Software Architecture (ICSA). IEEE, 36-46.

Hao He, Runzhi He, Haigiao Gu, and Minghui Zhou. 2021. A large-scale em-
pirical study on Java library migrations: prevalence, trends, and rationales. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 478-490.
Philipp Holzinger and Eric Bodden. 2021. A Systematic Hardening of Java’s
Information Hiding. In Proceedings of the 2021 International Symposium on
Advanced Security on Software and Systems. 11-22.

Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, An-
drea Stocco, and Paolo Tonella. 2020. Taxonomy of real faults in deep learning
systems. In Proceedings of the ACM/IEEE 42nd International Conference on Soft-
ware Engineering. 1110-1121.

Dhanushka Jayasuriya, Valerio Terragni, Jens Dietrich, and Kelly Blincoe. 2024.
Understanding the impact of APIs behavioral breaking changes on client applica-
tions. Proceedings of the ACM on Software Engineering 1, FSE (2024), 1238-1261.
Raffi Khatchadourian, Yiming Tang, Mehdi Bagherzadeh, and Baishakhi Ray.
2020. An Empirical Study on the Use and Misuse of Java 8 Streams.. In FASE.
97-118.

Hao Li, Filipe R Cogo, and Cor-Paul Bezemer. 2022. An empirical study of
yanked releases in the Rust package registry. IEEE Transactions on Software
Engineering 49, 1 (2022), 437-449.

Shuqing Li, Cuiyun Gao, Jianping Zhang, Yujia Zhang, Yepang Liu, Jiazhen Gu,
Yun Peng, and Michael R Lyu. 2024. Less Cybersickness, Please: Demystify-
ing and Detecting Stereoscopic Visual Inconsistencies in Virtual Reality Apps.
Proceedings of the ACM on Software Engineering 1, FSE (2024), 2167-2189.
Christian Macho, Fabian Oraze, and Martin Pinzger. 2024. DValidator: An
approach for validating dependencies in build configurations. Journal of Systems
and Software 209 (2024), 111916.

Sander Mak and Paul Bakker. 2017. Java 9 modularity: patterns and practices for
developing maintainable applications. " O’Reilly Media, Inc.".

Fabio Massacci and Ivan Pashchenko. 2021. Technical leverage in a software
ecosystem: Development opportunities and security risks. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE, 1386-1397.
Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza, Matthias
Hauswirth, and Nathaniel Nystrom. 2015. Use at your own risk: The java unsafe
api in the wild. ACM Sigplan Notices 50, 10 (2015), 695-710.

Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2017.
Understanding the use of lambda expressions in Java. Proceedings of the ACM
on Programming Languages 1, OOPSLA (2017), 1-31.

Md Rakib Hossain Misu, Rohan Achar, and Cristina V Lopes. 2023. SourcererJBF:
A Java Build Framework For Large-Scale Compilation. ACM Transactions on
Software Engineering and Methodology (2023).

Amit Kumar Mondal, Chanchal K Roy, Kevin A Schneider, Banani Roy, and
Sristy Sumana Nath. 2021. Semantic slicing of architectural change commits:
Towards semantic design review. In Proceedings of the 15th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement (ESEM).
1-6.

Cliodhna O’Connor and Helene Joffe. 2020. Intercoder Reliability in Qualitative
Research: Debates and Practical Guidelines. International Journal of Quali-
tative Methods 19 (2020), 1609406919899220. doi:10.1177/1609406919899220
arXiv:https://doi.org/10.1177/1609406919899220

Nicolai Parlog. 2015. Project Jigsaw is Really Coming in Java 9 — infoq.com.
https://www.infoq.com/articles/Project-Jigsaw-Coming-in-Java-9/. (Accessed
on 12-06-2023).

Nicolai Parlog. 2019. The Java Module System. Simon and Schuster.

Dewayne E Perry and Alexander L Wolf. 1992. Foundations for the study of
software architecture. ACM SIGSOFT SEN (1992).

Dewayne E Perry and Alexander L Wolf. 1992. Foundations for the study of
software architecture. ACM SIGSOFT Software Engineering Notes 17, 4 (1992),
40-52.

Ron Pressler and Alex Buckley. 2023. JEP 451: Prepare to Disallow the Dynamic
Loading of Agents — openjdk.org. https://openjdk.org/jeps/451. (Accessed on
12-06-2023).

Ron Pressler and Alex Buckley. 2023. JEP draft: Integrity and Strong Encapsula-
tion — openjdk.org. https://openjdk.org/jeps/8305968. (Accessed on 07-06-2023).

ICSE *26, April 12-18, 2026, RIO DE JANEIRO, BRAZIL

[89] Mark Reinhold. 2017. JEP 200: The Modular JDK — openjdk.org. https://openjdk.

[90
[91
[92
[93
[94

[95

[96

[97

[98

[99

[100

]
]
]
]
]

]

]

]

]

org/jeps/200. (Accessed on 12-06-2023).

Mark Reinhold. 2023. JEP 260: Encapsulate Most Internal APIs — openjdk.org.
https://openjdk.org/jeps/260. (Accessed on 29-06-2023).

Mary Shaw and David Garlan. 1996. Software architecture: perspectives on an
emerging discipline. Vol. 1. Prentice Hall Englewood Cliffs.

R.N. Taylor, N. Medvidovic, and Dashofy E.M. 2009. Software Architecture:
Foundations, Theory, and Practice. John Wiley & Sons.

Richard N Taylor, Nenad Medvidovic, and Eric M Dashofy. 2009. Software
architecture: foundations, theory, and practice. Wiley Publishing.

Dinghua Wang, Shuging Li, Guanping Xiao, Yepang Liu, and Yulei Sui. 2021.
An exploratory study of autopilot software bugs in unmanned aerial vehicles.
In Proceedings of the 29th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering. 20-31.
Ying Wang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying Xu, Xin Peng,
Yijian Wu, and Yang Liu. 2020. An empirical study of usages, updates and risks
of third-party libraries in java projects. In 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 35-45.

Ying Wang, Ming Wen, Zhenwei Liu, Rongxin Wu, Rui Wang, Bo Yang, Hai Yu,
Zhiliang Zhu, and Shing-Chi Cheung. 2018. Do the dependency conflicts in my
project matter?. In Proceedings of the 2018 26th ACM joint meeting on european
software engineering conference and symposium on the foundations of software
engineering. 319-330.

Ying Wang, Rongxin Wu, Chao Wang, Ming Wen, Yepang Liu, Shing-Chi Che-
ung, Hai Yu, Chang Xu, and Zhiliang Zhu. 2021. Will dependency conflicts
affect my program’s semantics? IEEE Transactions on Software Engineering 48, 7
(2021), 2295-2316.

Yongzhi Wang, Chengli Xing, Jinan Sun, Shikun Zhang, Sisi Xuanyuan, and
Long Zhang. 2020. Solving the Dependency Conflict of Java Components: A
Comparative Empirical Analysis. In 2020 IEEE 6th Intl Conference on Big Data
Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance
and Smart Computing,(HPSC) and IEEE Intl Conference on Intelligent Data and
Security (IDS). IEEE, 109-114.

Lida Zhao, Sen Chen, Zhengzi Xu, Chengwei Liu, Lyuye Zhang, Jiahui Wu, Jun
Sun, and Yang Liu. 2023. Software composition analysis for vulnerability detec-
tion: An empirical study on Java projects. In Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 960-972.

Mingwei Zheng, Jun Yang, Ming Wen, Hengcheng Zhu, Yepang Liu, and Hai
Jin. 2021. Why do developers remove lambda expressions in Java?. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 67-78.

https://doi.org/10.1177/1609406919899220
https://arxiv.org/abs/https://doi.org/10.1177/1609406919899220
https://www.infoq.com/articles/Project-Jigsaw-Coming-in-Java-9/
https://openjdk.org/jeps/451
https://openjdk.org/jeps/8305968
https://openjdk.org/jeps/200
https://openjdk.org/jeps/200
https://openjdk.org/jeps/260

	Abstract
	1 Introduction
	2 Background
	2.1 Java Platform Module System
	2.2 Breaking Strong Encapsulation

	3 Methodology
	4 Research Questions
	5 BSE Taxonomy
	6 Result and Analysis
	6.1 RQ1: BSE Problem Symptoms
	6.2 RQ2: Abuse Source
	6.3 RQ3: Abuse Target
	6.4 RQ4: BSE Resolution

	7 Discussion
	7.1 Implications
	7.2 Limitations and Threats to Validity

	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

